
FRMFILE (5) Spinal Cord Research Centre FRMFILE (5)

NAME
frmfile − frame file format

SYNOPSIS
#include "/usr/neuro/src/run.h"

DESCRIPTION
The frame file is the key file in the set of data, collectively known as arunfile, produced or used by
dsepr(1), analysis(1) and related programs. It is the one that holds information on both triggered and
untriggered channels, as well as the data collected from the triggered channels.

Frame File Format
+--------------------------------------+
| |
| Run Header |
| |
+--------------------------------------+
+--------------------------------------+
| Frame Header 1 |
+--------------------------------------+
| Frame Data |
| |
+--------------------------------------+

...
+--------------------------------------+
| Frame Header n |
+--------------------------------------+
| Frame Data |
| |
+--------------------------------------+

Files from a Captured Run
Each run of data results in one frame file, and a wav eform file for each untriggered channel. The frame
file will always begin with a run header, which records general information about the run, such as sam-
pling rate, number of frames, and for each channel, the sampling rate divisor, and calibration information.
Captured frames of triggered channel data follow. Each frame begins with a frame header which indi-
cates the starting sample number (i.e. at what time within the run the trigger pulse occurred).The frame
also contains one trace (a series of A/D samples) for each triggered channel. Each wav eform file con-
tains a contiguous series of A/D samples for one untriggered channel.

Frame File for Averaged Data
Av eraged data, produced by either real-time or post-hoc averaging, are stored in a frame file of the same
format as that used for raw data. Avalue in the run header indicates the method used to obtain the aver-
age. Oneframe is recorded for each bin in a multi-bin average. Insteadof recording the starting sample
number, the frame header records the number of sweeps of raw data that were averaged in that bin.

March 30, 2015 1

FRMFILE (5) Spinal Cord Research Centre FRMFILE (5)

Frame Format
+-------------------+-------------------+
| Flags | Tag |
+-------------------+-------------------+ Frame Header
| Sample no. or No. of frames |
+---------------------------------------+
+---------------------------------------+
| Frame Data |
| for trace 0 |
+---------------------------------------+

...
+---------------------------------------+
| |
| Frame Data |
| for trace n-1 |
| |
+---------------------------------------+

Frame Header
The frame header has three fields: deletion flags, a tag code, and a number. This number is either a sam-
ple number indicating when the raw frame was triggered, or a count of the number of sweeps averaged
into the frame.

Frame Data
The sample points for one triggered sweep from each triggered channel are stored after the frame header.
Each sweep is stored contiguously. Since channels can have independent sampling rate divisors, the
sweeps in a frame may not all contain the same number of data points, even though they all represent the
same length of time.However, the number of points per sweep for any giv en triggered channel is consis-
tent throughout all frames.

Binary Data Formats
A/D data samples in the frame file and wav eform files are stored as 16 bit signed integers, 2’s comple-
ment for negatives, and most significant byte first (known as big-endian). Numbers in the run header and
frame headers are either long integers (32-bit, 2’s complement signed, big-endian), short integers (16-bit,
2’s complement signed, big-endian), double precision floating-point (64-bit, IEEE format, big-endian), or
character (fixed length arrays, single-byte ASCII, NUL terminated).

Below are the C Language structure definitions used for the headers.They are appropriate for big-endian
architectures (Motorola, SPARC, PowerPC). For little-endian architectures (DEC, Intel) it is necessary to
flip the byte ordering for all short ints, long ints and doubles.

Listing 1: run.h

__
/*
* run.h -- definitions of run file headers and related info.
*
* (c) 1988, G.R. Detillieux, Spinal Cord Research Centre,
* The University of Manitoba. All Rights Reserved.
*/

#define NCHFRM 16 /* # chans for frame (triggered) data */
#define NCHREG 16 /* # chans for regular (untriggered) data */

#define CHNAMESIZ 42 /* size of channel name string */

typedef short int ADSAMPLE; /* data type used for A/D values */
typedef long int ADPERIOD; /* data type used for time values (sampling periods) */

2 March 30, 2015

FRMFILE (5) Spinal Cord Research Centre FRMFILE (5)

/* calibration info for one channel: */
struct calinfo {

ADSAMPLE ca_zero; /* A/D value for zero volts */
ADSAMPLE ca_height; /* A/D value for cal pulse minus value for zero */
long int ca_level; /* level of cal pulse in uV */
short int ca_gain; /* gain factor used for channel */
char ca_name[CHNAMESIZ]; /* channel name string */

};

#define RUNMAGIC 0xFFAAFABF /* "magic" number identifying run file */

/* define averaging methods used by dsepr, others in analysis/param.h: */
#define AM_TRAWCAP 0 /* raw trace capture */
#define AM_TAVGCAP 1 /* averaged trace capture, ... */

/* ... same code as AM_TAVGFRMLST */

/* run header in frame data file: */
struct runhdr {

long int rh_magic; /* magic number for run file */
ADPERIOD rh_length; /* run length as #samples */
double rh_samprate; /* sample rate in Hz */
long int rh_nframes; /* # frames in file */
long int rh_frmsiz; /* frame size in bytes */
ADPERIOD rh_delay; /* delay to start of frame as #samples */
ADPERIOD rh_window; /* frame sampling window as #samples */
ADPERIOD rh_gpper; /* gate pulse period as #samples */
ADSAMPLE rh_minbinlevel; /* min. W.F. level for AM_TAVGLEVEL */
ADSAMPLE rh_maxbinlevel; /* max. W.F. level for AM_TAVGLEVEL */
short int rh_avgmethod; /* averaging method, or 0 for raw */
short int rh_levelwf; /* W.F. from which above levels come */
ADPERIOD rh_wreduce; /* #samples by which usable window reduced */
long int rh_starttime[2];/* time capture started, if available */
short int rh_reserve[19]; /* reserved for future use */
short int rh_needrhdfile; /* extra run header info. needed */
short int rh_npts[NCHFRM]; /* # points in triggered channel frames */
short int rh_frmdiv[NCHFRM]; /* sample rate divisors for trig. chan. */
short int rh_regdiv[NCHREG]; /* sample rate divisors for untrig. chan. */
short int rh_frmchan[NCHFRM]; /* channel numbers for traces */
short int rh_regchan[NCHREG]; /* channel numbers for waveforms */
struct calinfo rh_frmcal[NCHFRM]; /* calibr. info for framed channels */
struct calinfo rh_regcal[NCHREG]; /* calibr. info for regular (unframed) channels */
long int rh_frmres[NCHFRM]; /* reserved for future use */
long int rh_regres[NCHREG]; /* reserved for future use */

};

/* header at beginning of each frame: */
struct frmhdr {

long int fh_flags; /* tag, deletion flags & room for more */
ADPERIOD fh_sampnum; /* sample # where gate pulse detected */

};

#define fh_numsweeps fh_sampnum /* # of sweeps in an averaged frame */

/* frame header flags: */
#define DELFLAGS 0xE0000000 /* all 3 deletion flags */
#define MANDEL 0x80000000 /* frame manually deleted */
#define AUTODEL1 0x40000000 /* frame auto-del’d due to clipping */
#define AUTODEL2 0x20000000 /* frame auto-del’d due to bad cal pulse */
#define ISDELETED(fh) ((fh).fh_flags & DELFLAGS)
#define TAGMASK MAXSHORT /* all bits reserved for tags */
#define NTAGS 4096 /* # of different tags used */
#define INTAGLIST(fh,tlist,tlen) (inlist((unsigned short int)((fh).fh_flags & TAGMASK), \

(tlist), (tlen)))
__

Calibration and unit conversions
Note that the fields rh_frmcal and rh_regcal are both arrays of structures containing the calibration infor-
mation and identifying name for each channel. The rh_frmcal is used for the framed, or triggered chan-
nels, whose samples are contained in the frames of this same file, right after the run header. The rh_reg-
cal is used for the regular, or untriggered channels, whose samples are contained in the separate
waveform files.

These structures are copied from the calibration file at the start of the data capture. The calibration file
(default.cal) simply contains an array of 16 or more of these structures, one for each channel on the A/D

March 30, 2015 3

FRMFILE (5) Spinal Cord Research Centre FRMFILE (5)

converter, with no header or other fields in the file. The structures for the channels to be captured are
copied to the rh_frmcal and rh_regcal entries corresponding to the traces or wav eforms to which these
channels are assigned.

Each of these structures contains three fields that permit conversion from A/D sample values to voltages.
The ca_zero represents a zero volt level on the channel, expressed as an A/D sample value. The
ca_height represents the height of a calibration pulse of known amplitude, expressed as a displacement in
A/D sample values. Theca_level is the amplitude of this same calibration pulse in microvolts. Thus,to
convert A/D samples for a given untriggered channel "i" to millivolts, one could use this formula:

(samp - (ca_zero of rh_regcal)) × (ca_level of rh_regcal)
i i

mv = ---
(ca_height of rh_regcal) × 1000

i

the equivalent in C Language, with required type conversions, would be:

mv = (samp-run.rh_regcal[i].ca_zero)
* (double)run.rh_regcal[i].ca_level

/ ((double)run.rh_regcal[i].ca_height * 1000.0);

Tw o other fields in the calibration information structures are ca_gain and ca_name. The ca_gain is sim-
ply the gain code used for the A/D channel used for this signal.It is provided for information only, and
is not required for level conversions of the A/D samples.The ca_name is an ASCII NUL terminated
character string containing the name given to the channel − usually describing the signal.

Similar unit conversions must be done on the time axis, to convert from sample numbers to, say, mil-
liseconds. Therh_samprate contains the base sampling rate at which the run was captured, so to calcu-
late the the time of onset of the n-th sample at this rate, in milliseconds, the C formula would be:

ms = n * 1000.0 / run.rh_samprate; [1]

Complicating matters somewhat is the fact that samples are not necessarily stored at the base sampling
rate for all channels. In fact, the channels may all be stored using different effective rates. Therh_frm-
div and rh_regdiv arrays contain the sampling rate divisors for all triggered and untriggered channels,
respectively. These divisors are all integers, and determine how samples are stored for the channels.A
divisor of 1 indicates that all samples are stored, at the base sampling rate.A divisor of n indicates that
only the first of every n samples at the base rate is kept for the channel.As a special case, a 0 divisor
means this particular channel was not used.

The complete C formula to calculate the time of onset of the n-th stored sample for untriggered channel
"i" is:

ms = n * 1000.0 / (run.rh_samprate
/ run.rh_regdiv[i]); [2]

The sampling rate division of triggered channels is handled similarly, except that the whole process is
restarted for each frame.Trigger pulses on the trigger signal (which is not usually stored in the run)
cause frames to be started, triggering sweeps from each of the triggered channels. When a trigger pulse
occurs during the capture of a raw run file, the time of onset of the trigger is recorded in the fh_samp-
num field of the new frame’s header, as a sample number at the base sampling rate. Thus, the first time
conversion formula above [1] can be used to get the time of onset in milliseconds.

From the time of onset of the trigger pulse, the capture program waits for a length of time specified by
the rh_delay field, then begins storing samples from the triggered channels into the new frame, for the
length of time specified by the rh_window field. Bothfields specify time as a number of samples at the
base sampling rate.A neg ative delay indicates that pre-trigger sampling was performed in the frames.
For any triggered channel with a divisor n greater than 1, only the first of every n samples is kept, start-
ing with the first sample after the delay has passed. Since triggered channels can be stored at different
rates, but for the same length of time in each frame, the number of sample points per frame can vary
from channel to channel. The rh_npts array indicates the number of samples per frame for each trig-
gered channel.

4 March 30, 2015

FRMFILE (5) Spinal Cord Research Centre FRMFILE (5)

The time offset of the n-th sample of channel "i" from the start of the frame can be calculated with a
variant of formula [2], using rh_frmdiv rather than rh_regdiv. The time offset of the n-th sample in a
given frame, from the start of the run is:

ms = (frm.fh_sampnum + run.rh_delay
+ (n * run.rh_frmdiv[i]))

* 1000.0 / run.rh_samprate; [3]

Extended run header file format
For runs of data that have more than 16 wav eforms, more than 16 traces, or calibration zero or height
values that are larger than 16 bits, the run header format described above is not sufficient. Ratherthan
changing the format, which would break backwards compatibility, we use this same header format, in the
.frm (frame) file, for the first 16 traces and wav eforms, but also add another.rhd run header file, which
is an ASCII text file that contains run header information on all traces and wav eforms in use for the run,
as well as other parameters common for the entire run. The programs that open arunfile will check for
the presence of this run header file, and if there they will also verify that the information in it is consis-
tent with the run header in the frame file, for all overlapping parameters.

The contents of this run header file consists of lines of parameter settings, much like shell variables, in
the form

NAME=’value’

The names are all upper case variants of the names in therunhdr structure shown above, e.g.: LENGTH ,
SAMPRATE , NFRAMES, FRMSIZ , DELAY , WINDOW , GPPER, MINBINLEVEL , MAXBIN-
LEVEL , AV GMETHOD , LEVELWF , WREDUCE andNEEDRHDFILE . (This latter field is set to 1
if the run header file is needed.)There are also variable names in the formFRMDIV_ n and REG-
DIV_n (where n is the trace or wav eform number, from 0 up to a maximum of 99), for all trace or
waveform specific run header parameters.These includeNPTS, FRMDIV , FRMCHAN , FRM-
CALZERO , FRMCALHEIGHT , FRMCALLEVEL , FRMCALGAIN , FRMCALNAME , REGDIV ,
REGCHAN , REGCALZERO , REGCALHEIGHT , REGCALLEVEL , REGCALGAIN and REG-
CALNAME . Finally RESERVED_n is set for any of the reserved fields which are non-zero, for the
sake of preserving backwards compatibility for any future uses of these fields.

Start time field format
In 2015 we added a rh_starttime field to the run header, to track the actual time the data capture started
for a given run. Beforethis, we could only estimate this based on the modification time of the oldest
waveform files for a run, as anything else was subject to subsequent modification.We use a standard
Unix-style time_t format data type for this, which records seconds since midnight UTC of January 1st,
1970. Theproblem with this data type is it is in transition from a 32-bit integer to a 64-bit one, because
the 32-bit data type will overflow early in the year 2038. Because not all systems currently use the
64-bit type (Mac OS X was one of the first to make the transition), we define the field as an array of two
32-bit long integers, and handle the machine-dependent conversion in software. (See
/usr/neuro/src/lib/runio.c for examples of this.)When displaying this time, e.g. in dumprun, we use the
C library’s localtime() function to convert to something human-readable.

By storing the time in UTC internally, we hav ea start time that is globally accurate even when data files
travel across time zones. This is in contrast to the start date and time stored by Axoscope or pClamp in
the ABF file’s header, which is stored in local time. This can lead to some confusion if ABF files travel
across time zones and are then converted by axon2run, as the resulting run file’s start time will not accu-
rately reflect the true local start time of the ABF file’s capture. Itis best to convert ABF files in the time
zone in which they were captured, which can be overridden in software when running axon2run.

Raw direct-to-disk capture format
Programs like dcap and dcavg, or Concurrent’sdacq, produce files in a raw direct-to-disk capture for-
mat. Thesefiles can be used as input todsepr(1). The format of the data in such a file is simply an
array of A/D samples, stored as 16 bit signed integers, 2’s complement for negatives, and in the
machine’s own native byte ordering. The samples are stored in the order they are sampled from the A/D

March 30, 2015 5

FRMFILE (5) Spinal Cord Research Centre FRMFILE (5)

converter: the first sample from the first channel, then the second channel, third channel and so on, fol-
lowed by the second sample from each of these channels, and on. There are no headers, and no separa-
tors or delimiters, just binary data. Information about the number of channels, sampling frequency, and
calibration are not stored directly in these files, but must be kept track of separately. This could be used
as an intermediate format for a data conversion program, which could then usedsepr to handle all the
details of run file creation.

FILES
*.frm frame files, containing run headers
*.rhd run header file for extended file format
*.w?? correspondingwaveform files
*.txt correspondingrun descriptions
*.frd correspondingframe descriptions

SEE ALSO
dsepr(1), cap(1), analysis(1), dumprun(1), axon2run(1)

6 March 30, 2015

