FRMFILE(5) Spinal Cord Research Centre FRMFILE (5)

NAME

frmfile — frame file format
SYNOPSIS

#include "/usr/neuro/src/run.h"
DESCRIPTION

The frame file is the dy file in the set of data, colleedly known as arunfile, produced or used by
dsepi(1), analysig1) and related programs. It is the one that holds information on both triggered and
untriggered channels, as well as the data collected from the triggered channels.

Frame File Format

o e m e e e e e e e e e e e e e o - +
| |
| Run Header |
| |
e +
o m e e e e e e e e e e e e e e e e e o +
| Frame Header 1 |
e +
| Frame Dat a |
| |
e +
+------------------: ------------------- +
| Frame Header n |
o m e e e e e e e e e e e e e e aa o +

Files from a Captured Run
Each run of data results in one frame file, andazderm file for each untriggered channel. The frame
file will always begin with a run headewhich records general information about the run, such as sam-
pling rate, number of frames, and for each channel, the sampling vister,dind calibration information.
Captured frames of triggered channel data falldEach frame begins with a frame header which indi-
cates the starting sample number (i.e. at what time within the run the trigger pulse occlined)ame
also contains one trace (a series of A/D samples) for each triggered channel. azdohnwfile con-
tains a contiguous series of A/D samples for one untriggered channel.

Frame File for Averaged Data
Averaged data, produced by either real-time or post-iweraging, are stored in a frame file of the same
format as that used forwadata. Avalue in the run header indicates the method used to obtairvéhe a
age. Ondrame is recorded for each bin in a multi-biveiage. Insteadf recording the starting sample
number the frame header records the number of sweepsiotiata that werevaeraged in that bin.

March 30, 2015 1

FRMFILE(5) Spinal Cord Research Centre FRMFILE (5)

Frame Format

T T +
| Fl ags | Tag |
R R L + Frame Header
| Sanpl e no. or No. of frames |
e +
o m e e e e e e e e e e e e m e mamaa o +

Frame Data
for trace 0O

Frame Header
The frame header has three fields: deletion flags, a tag code, and a.nlihibarumber is either a sam-
ple number indicating when thewdarame vas triggered, or a count of the number of sweegsaged
into the frame.

Frame Data
The sample points for one triggered sweep from each triggered channel are stored after the frame header
Each sweep is stored contiguouslince channels can Y@ independent sampling rate divisors, the
sweeps in a frame may not all contain the same number of data peentsh@ugh thg al represent the
same length of timeHowever, the number of points per sweep folyagiven triggered channel is consis-
tent throughout all frames.

Binary Data Formats
A/D data samples in the frame file andwsdform files are stored as 16 bit signed integers,@mple-
ment for n@atives, and most significant byte first (known as big-endian). Numbers in the run header and
frame headers are either long mes (32-bit, Z complement signed, big-endian), short integers (16-bit,
2's ommplement signed, big-endian), double precision floating-point (64-bit, IEEE format, big-endian), or
character (fixed length arrays, single-byte ASCII, NUL terminated).

Below are the C Language structure definitions used for the headéey. are appropriate for big-endian
architectures (Motorola, SPARC, WerPC). Fer little-endian architectures (DEC, Intel) it is necessary to
flip the byte ordering for all short ints, long ints and doubles.

Listing 1: run.h

run.h -- definitions of run file headers and related info.

(c) 1988, G R Detillieux, Spinal Cord Research Centre,
The University of Manitoba. Al R ghts Reserved.
/

EE S S

#def i ne NCHFRM 16 /* # chans for frane (triggered) data */

#def i ne NCHREG 16 /* # chans for regular (untriggered) data */

#def i ne CHNAMESI Z 42 /* size of channel nane string */

typedef short int ADSAMPLE; /* data type used for A/D val ues */

typedef long int ADPERI OD; /* data type used for tine values (sanpling periods) */

2 March 30, 2015

FRMFILE(5) Spinal Cord Research Centre FRMFILE (5)

/* calibration info for one channel: */
struct calinfo {

ADSANPLE ca_zero; /* A/D value for zero volts */
ADSAMPLE ca_hei ght; /* AID value for cal pulse mnus value for zero */
long int ca_l evel ; /* level of cal pulse in uV */
short int ca_gain; /* gain factor used for channel */
char ca_name[CHNAMVESI Z] ; /* channel name string */
b
#defi ne RUNVAG C 0x FFAAFABF /* "magi c" nunber identifying run file */
/* define averagi ng nethods used by dsepr, others in analysis/paramh: */
#defi ne AM_TRAWCAP 0 /* raw trace capture */
#defi ne AM TAVGCAP 1 /* averaged trace capture, ... */
/* ... same code as AM TAVGFRMLST */

/* run header in frane data file: */
struct runhdr {

long int rh_magi c; /* magic nunber for run file */

ADPERI OD rh_l ength; /* run length as #sanples */

doubl e rh_sanprate; /* sanple rate in Hz */

long int rh_nfranes; /* # frames in file */

long int rh_frmsiz; /* frane size in bytes */

ADPERI CD rh_del ay; /* delay to start of frane as #sanples */

ADPERI CD rh_wi ndow; /* frame sanpling wi ndow as #sanples */

ADPERI OD rh_gpper; /* gate pul se period as #sanples */

ADSAMPLE rh_mnbinlevel; /* min. WF. level for AM TAVGLEVEL */

ADSAMPLE rh_maxbinl evel ; /* max. WF. level for AM TAVGLEVEL */

short int rh_avgnet hod; /* averaging nethod, or O for raw */

short int rh_l evel wf; /* WF. fromwhich above | evels cone */

ADPERI CD rh_wr educe; /* #sanpl es by which usabl e wi ndow reduced */

long int rh_starttime[2];/* time capture started, if available */

short int rh_reserve[19]; /* reserved for future use */

short int rh_needrhdfile; /* extra run header info. needed */

short int rh_npt s[NCHFRM ; /* # points in triggered channel franes */
short int rh_frmdi v[NCHFRM ; /* sanple rate divisors for trig. chan. */
short int rh_regdi v[NCHREG ; /* sanple rate divisors for untrig. chan. */
short int rh_f r mchan[NCHFRM ; /* channel nunbers for traces */

short int rh_r egchan[NCHREQ ; /* channel nunbers for waveforns */

struct calinfo rh_frntal [NCHFRM ; /* calibr. info for framed channels */
struct calinfo rh_regcal [NCHREG ; /* calibr. info for regular (unfraned) channels */
long int rh_frnres[NCHFRM ; /* reserved for future use */

long int rh_regres[NCHREG ; /* reserved for future use */

b

/* header at beginning of each frane: */
struct frmhdr {

long int fh_flags; /* tag, deletion flags & roomfor nore */
ADPERI OD fh_sanpnum /* sanple # where gate pul se detected */
I
#define fh_nunsweeps fh_sanpnum /* # of sweeps in an averaged frane */

/* frame header flags: */

#def i ne DELFLAGS 0xE0000000 /* all 3 deletion flags */

#def i ne MANDEL 0x80000000 /* frame manual |y del eted */

#def i ne AUTODEL1 0x40000000 /* frame auto-del’d due to clipping */

#def i ne AUTODEL2 0x20000000 /* frane auto-del’d due to bad cal pulse */

#def i ne | SDELETED(f h) ((fh).fh_flags & DELFLAGS)

#def i ne TAGVASK MAXSHORT /* all bits reserved for tags */

#defi ne NTAGS 4096 /* # of different tags used */

#define | NTAGLI ST(fh,tlist,tlen) (inlist((unsigned short int)((fh).fh_flags & TAGVASK), \

(tlist), (tlen)))

Calibration and unit conversions
Note that the fields rh_frmcal and rhgoal are both arrays of structures containing the calibration-infor
mation and identifying name for each channel. The rh_frmcal is used for the framed, or triggered chan-
nels, whose samples are contained in the frames of this same file, right after the run Teadér re-
cal is used for the gmlar, or untriggered channels, whose samples are contained in the separate
waveform files.

These structures are copied from the calibration file at the start of the data capture. The calibration file
(default.cal) simply contains an array of 16 or more of these structures, one for each channel on the A/D

March 30, 2015 3

FRMFILE(5) Spinal Cord Research Centre FRMFILE (5)

corverter, with no header or other fields in the file. The structures for the channels to be captured are
copied to the rh_frmcal and rh_regcal entries corresponding to the tracesvéorms to which these
channels are assigned.

Each of these structures contains three fields that permierston from A/D sample values tmkages.
The ca_zero represents a zeroltvievel on the channel, expressed as an A/D samg@kiev The
ca_height represents the height of a calibration pulse afrkrmmplitude, expressed as a displacement in
A/D sample alues. Theca_level is the amplitude of this same calibration pulse in miolts. Thus,to
corvert A/D samples for a gen untriggered channel "i" to miliolts, one could use this formula:

(samp - (ca_zero of rh_regcal |)) x (ca_level of rh_regcal |)

(ca_hei ght of rh_regcal i) x 1000

the equident in C Language, with required type gersions, would be:

nv = (sanmp-run.rh_regcal [i].ca_zero)
* (double)run.rh_regcal[i].ca_l evel
/ ((double)run.rh_regcal [i].ca_height * 1000.0);

Two other fields in the calibration information structures are ca_gain and ca_name. The ca_gain is sim-
ply the gain code used for the A/D channel used for this sighas. provided for information onlyand

is not required for beel conversions of the A/D samplesThe ca_name is an ASCII NUL terminated
character string containing the nameegi to the channel — usually describing the signal.

Similar unit cowersions must be done on the time axis, tovegdnfrom sample numbers to, sayil-
liseconds. Theh_samprate contains the base sampling rate at which theasicaptured, so to calcu-
late the the time of onset of the n-th sample at this rate, in milliseconds, the C formula would be:

m = n * 1000.0 / run.rh_sanprate; [1]

Complicating matters somewhat is the fact that samples are not necessarily stored at the base sampling
rate for all channels. In fact, the channels may all be stored usiegedif efective rates. Theh_frm-

div and rh_regdiv arrays contain the sampling rate divisors for all triggered and untriggered channels,
respectiely. These divisors are all irders, and determine Wwosamples are stored for the channels.

divisor of 1 indicates that all samples are stored, at the base samplingirdieisor of n indicates that

only the first of gery n samples at the base rate is kept for the chankela special case, a Ovidior

means this particular channel was not used.

The complete C formula to calculate the time of onset of the n-th stored sample for untriggered channel
i is:
m = n * 1000.0 / (run.rh_sanprate
/[run.rh_regdiv[i]); [2]

The sampling rate division of triggered channels is handled simiktept that the whole process is
restarted for each frameTrigger pulses on the trigger signal (which is not usually stored in the run)
cause frames to be started, triggering sweeps from each of the triggered channels. When a trigger pulse
occurs during the capture of anraun file, the time of onset of the trigger is recorded in the fh_samp-
num field of the n& frames header as a ample number at the base sampling rate. Thus, the first time
conversion formula abee [1] can be used to get the time of onset in milliseconds.

From the time of onset of the trigger pulse, the capture prograis ¥or a length of time specified by

the rh_delay field, then begins storing samples from the triggered channels intavtfimme, for the

length of time specified by the rh_wingdield. Bothfields specify time as a number of samples at the
base sampling rateA negdive cklay indicates that pre-trigger sampling was performed in the frames.
For any triggered channel with a divisor n greater than 1, only the firsv@f en samples is kept, start-

ing with the first sample after the delay has passed. Since triggered channels can be stderdrat dif
rates, but for the same length of time in each frame, the number of sample points per framg can v
from channel to channel. The rh_npts array indicates the number of samples per frame for each trig-
gered channel.

4 March 30, 2015

FRMFILE(5) Spinal Cord Research Centre FRMFILE (5)

The time offset of the n-th sample of channel "i" from the start of the frame can be calculated with a
variant of formula [2], using rh_frmdirather than rh_igdiv. The time ofset of the n-th sample in a
given frame, from the start of the run is:

ms = (frmfh_sanpnum + run.rh_del ay
+ (n * run.rh_frrdiv[i]))
* 1000.0 / run.rh_sanprate,; [3]

Extended run header file brmat
For runs of data that lva nore than 16 wavdorms, more than 16 traces, or calibration zero or height
values that are lger than 16 bits, the run header format describedeisorot suficient. Ratherthan
changing the format, which would break backwards compatibilieyuse this same header format, in the
frm (frame) file, for the first 16 traces andawgorms, but also add anothehd run header file, which
is an ASCII text file that contains run header information on all traces amdorms in use for the run,
as well as other parameters common for the entire run. The programs that eiteavill check for
the presence of this run header file, and if therg thi# also verify that the information in it is consis-
tent with the run header in the frame file, for aledapping parameters.

The contents of this run header file consists of lines of parameter settings, neudtelikvariables, in
the form

NAME=" val ue’

The names are all upper casgiants of the names in tlenhdr structure shown albve, eg.: LENGTH ,
SAMPRATE, NFRAMES, FRMSIZ, DELAY, WINDOW, GPPER, MINBINLEVEL , MAXBIN-
LEVEL , AVGMETHOD , LEVELWF , WREDUCE andNEEDRHDFILE . (This latter field is set to 1
if the run header file is needed)here are also variable names in the fdfRMDIV_n and REG-
DIV_n (wheren is the trace or adorm numbeyr from O up to a maximum of 99), for all trace or
waveform specific run header parameter§hese includeNPTS, FRMDIV, FRMCHAN, FRM-
CALZERO, FRMCALHEIGHT , FRMCALLEVEL , FRMCALGAIN , FRMCALNAME , REGDIV,
REGCHAN, REGCALZERO, REGCALHEIGHT , REGCALLEVEL , REGCALGAIN and REG-
CALNAME . Finally RESERVED n is set for ag of the resered fields which are non-zero, for the
sale of preserving backwards compatibility foryafuture uses of these fields.

Start time field format
In 2015 we added a rh_starttime field to the run hedddrack the actual time the data capture started
for a given run. Beforethis, we could only estimate this based on the modification time of the oldest
waveform files for a run, as anything else was subject to subsequent modificii®nse a standard
Unix-style time_t format data type for this, which records seconds since midnight UTC of January 1st,
1970. Theproblem with this data type is it is in transition from a 32-bit integer to a 64-bit one, because
the 32-bit data type will verflow early in the year 2038. Because not all systems currently use the
64-bit type (Mac OS X was one of the first to mdke transition), we define the field as an array af tw
32-bit long integers, and handle the machine-dependentverson in softvare. (See
/usr/neuro/src/lib/runio.c for examples of thisWhen displaying this time, e.g. in dumprun, we use the
C library’s localtime() function to corert to something human-readable.

By storing the time in UTC internallyve havea dart time that is globally accurateem when data files

travel across time zones. This is in contrast to the start date and time stored by Axoscope or pClamp in
the ABF files headey which is stored in local time. This can lead to some confusion if ABF filesl tra
across time zones and are thenveotied by axon2run, as the resulting run §ldart time will not accu-

rately reflect the true local start time of the ABF §leapture. Itis best to covert ABF files in the time

zone in which thg were captured, which can bgenridden in software when running axon2run.

Raw direct-to-disk capture format
Programs like dcap and dcavg or Concurrent'sdacg, produce files in a ra direct-to-disk capture fer
mat. Thesdiles can be used as input dsepi(l). Theformat of the data in such a file is simply an
array of A/D samples, stored as 16 bit signed integers,a@nplement for ngaives, and in the
machine$ ovn native byte ordering. The samples are stored in the order @hee sampled from the A/D

March 30, 2015 5

FRMFILE(5) Spinal Cord Research Centre FRMFILE (5)

converter: the first sample from the first channel, then the second channel, third channel and so on, fol-
lowed by the second sample from each of these channels, and on. There are no headers, and no separa-
tors or delimiters, just binary data. Information about the number of channels, sampling fyegadnc
calibration are not stored directly in these files, but must be kept track of sepafdtisiycould be used

as an intermediate format for a dataesion program, which could then usdseprto handle all the

details of run file creation.

FILES
*frm framefiles, containing run headers
*rhd runheader file for extended file format
*w?? correspondingvaveform files
*.txt correspondingun descriptions
*.frd correspondingrame descriptions

SEE ALSO
dsepr(1), cap(l), analysis(1), dumprun(l), axon2run(1)

6 March 30, 2015

